Search results for "Convergence of random variables"
showing 6 items of 6 documents
On the empirical spectral distribution for certain models related to sample covariance matrices with different correlations
2021
Given [Formula: see text], we study two classes of large random matrices of the form [Formula: see text] where for every [Formula: see text], [Formula: see text] are iid copies of a random variable [Formula: see text], [Formula: see text], [Formula: see text] are two (not necessarily independent) sets of independent random vectors having different covariance matrices and generating well concentrated bilinear forms. We consider two main asymptotic regimes as [Formula: see text]: a standard one, where [Formula: see text], and a slightly modified one, where [Formula: see text] and [Formula: see text] while [Formula: see text] for some [Formula: see text]. Assuming that vectors [Formula: see t…
On almost sure convergence of amarts and martingales without the Radon-Nikodym property
1988
It is shown here that for any Banach spaceE-valued amart (X n) of classB, almost sure convergence off(Xn) tof(X) for eachf in a total subset ofE * implies scalar convergence toX.
Recursive estimation of the conditional geometric median in Hilbert spaces
2012
International audience; A recursive estimator of the conditional geometric median in Hilbert spaces is studied. It is based on a stochastic gradient algorithm whose aim is to minimize a weighted L1 criterion and is consequently well adapted for robust online estimation. The weights are controlled by a kernel function and an associated bandwidth. Almost sure convergence and L2 rates of convergence are proved under general conditions on the conditional distribution as well as the sequence of descent steps of the algorithm and the sequence of bandwidths. Asymptotic normality is also proved for the averaged version of the algorithm with an optimal rate of convergence. A simulation study confirm…
Stochastic order characterization of uniform integrability and tightness
2013
We show that a family of random variables is uniformly integrable if and only if it is stochastically bounded in the increasing convex order by an integrable random variable. This result is complemented by proving analogous statements for the strong stochastic order and for power-integrable dominating random variables. Especially, we show that whenever a family of random variables is stochastically bounded by a p-integrable random variable for some p>1, there is no distinction between the strong order and the increasing convex order. These results also yield new characterizations of relative compactness in Wasserstein and Prohorov metrics.
Variable Length Memory Chains: Characterization of stationary probability measures
2021
Variable Length Memory Chains (VLMC), which are generalizations of finite order Markov chains, turn out to be an essential tool to modelize random sequences in many domains, as well as an interesting object in contemporary probability theory. The question of the existence of stationary probability measures leads us to introduce a key combinatorial structure for words produced by a VLMC: the Longest Internal Suffix. This notion allows us to state a necessary and sufficient condition for a general VLMC to admit a unique invariant probability measure. This condition turns out to get a much simpler form for a subclass of VLMC: the stable VLMC. This natural subclass, unlike the general case, enj…
Asymptotic optimality of myopic information-based strategies for Bayesian adaptive estimation
2016
This paper presents a general asymptotic theory of sequential Bayesian estimation giving results for the strongest, almost sure convergence. We show that under certain smoothness conditions on the probability model, the greedy information gain maximization algorithm for adaptive Bayesian estimation is asymptotically optimal in the sense that the determinant of the posterior covariance in a certain neighborhood of the true parameter value is asymptotically minimal. Using this result, we also obtain an asymptotic expression for the posterior entropy based on a novel definition of almost sure convergence on "most trials" (meaning that the convergence holds on a fraction of trials that converge…